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Abstract: Laser tweezers Raman spectroscopy (LTRS) combines optical tweezers technology
and Raman spectroscopy to obtain biomolecular compositional information from a single cell
without invasion or destruction, so it can be used to “fingerprint” substances to characterize
numerous types of biological cell samples. In the current study, LTRS was combined with two
machine learning algorithms, principal component analysis (PCA)-linear discriminant analysis
(LDA) and random forest, to achieve high-precision multi-species blood classification at the
single-cell level. The accuracies of the two classification models were 96.60% and 96.84%,
respectively. Meanwhile, compared with PCA-LDA and other classification algorithms, the
random forest algorithm is proved to have significant advantages, which can directly explain the
importance of spectral features at the molecular level.

© 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Blood identification from different species is of great significance in many areas. For example,
the quarantine of imported and exported animal products under the current epidemic environment,
forensic analysis in criminal cases, and the protection of endangered wildlife are all heavily
dependent on blood-based species identification. Many analytical methods have been used to
identify blood from different species. Traditional methods include immunochromatographic
assays, redox reactions, and enzyme immunoassays, among others [1–3]. With progress in
modern instrumentation and analytical methods, emerging technologies such as high-performance
liquid chromatography [4], mass spectrometry [5], and DNA detection technology [6] can be
used for blood identification. Although these methods have proven reliable and effective for
identifying blood and determining its origin, they also have some drawbacks. First and foremost,
the above methods extract DNA or protein from cells for analysis in a destructive way. If the
amount of sample available is very small, this constitutes a substantial limitation because to
the greatest extent possible, blood samples should be protected for further analysis and testing;
especially in criminal cases and cases of wildlife protection. In addition, these methods are
difficult to apply at the single-cell level. Because hemoglobin differences in red blood cells
(RBCs) are the basis for blood differentiation between different species, using individual RBCs
for blood identification is more targeted than using whole blood samples. Therefore, exploring
a nondestructive, noninvasive, single-cell-based blood identification technology for forensic
medicine, veterinary medicine, wildlife conservation, and other related disciplines is of great
research value.
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Raman spectroscopy is a powerful detection and analysis technology [7]. Using an inelastic
scattering spectrum with different frequencies from incident light, it can obtain information on
molecular vibration and rotation, then analyze the structure of the substance. It can therefore be
used to determine the “fingerprint” of a substance, and characterize various samples. Compared
with other spectrum techniques, Raman spectroscopy has a wide range of detection, including
common inorganic substances, organic substances, biological macromolecular synthetic materials
(carbon nanotubes), and chemical reaction catalysts, among others [8–12]. It is now widely
used in chemistry, materials science, medicine, and other fields [13,14]. It has great value for
qualitative analysis, quantitative analysis, and molecular structure determination [15,16]. For the
analysis of biological samples, molecular compositional information from cells can be obtained
without interference from environmental water, which makes it an ideal tool for biological science
research [17].

RBCs are an important component of blood, and much information can be derived from
them via Raman spectroscopy. Hemoglobin makes up > 95% of the dry weight of RBCs,
and each RBC contains approximately 20 million hemoglobin molecules. The structure of
hemoglobin makes the greatest contribution to the molecular vibration profile of RBCs. Structural
differences between hemoglobin in different species result in slight differences in their Raman
spectrums, which provides a reliable basis for nondestructive and unlabeled blood identification
[18]. Previous studies investigating blood classification based on Raman spectroscopy were
conducted using whole blood samples [19,20]. If further targeted studies on RBCs are required,
Raman spectroscopy should be able to be conducted at the single-cell level.

The main problem with traditional Raman spectroscopy is that the cell samples are in continuous
motion due to inherent Brownian motion and the suspension of the aqueous solution, which
leads to the failure of stable excitation and acquisition of Raman signals. Laser tweezers Raman
spectroscopy (LTRS) combines Optical Tweezers [21] and Raman spectroscopy, which can

Fig. 1. Experimental flow chart.
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effectively solve the difficult problem of detecting the Raman information of particles in a liquid
phase environment [22].In Raman detection, optical tweezers are used to capture cells to ensure
a single signal source, and the cells can be trapped in a light trap to reduce the influence of the
substrate on the background noise of the cell’s Raman signal, which is a vast improvement on the
traditional method of mechanical fixation of the sample in Raman analysis. With the continuous
optimization of machine learning algorithms and data processing methods, LTRS has been widely
used in microbiology, biomedicine, environmental science, and other disciplines [23–26].

In the current study the Raman spectra of RBCs from 10 species were obtained without damage
or invasion using a self-built LTRS system. After simple preprocessing, two machine learning
algorithms were used to analyze spectral data and establish a classification model to predict
interspecific blood at the single-cell level; PCA-LDA and random forest (RF). The whole process
of this study is shown in Figure 1. In addition, the comparison of the two methods shows that the
RF algorithm has a significant advantage that it can directly explain the features that contribute
greatly to classification at the molecular level.

2. Materials and methods

2.1. Sample collection and preparation

Anticoagulated whole blood samples from nine non-human species were purchased, includ-
ing pig(B1612), horse(B1613), dog(B1618), cat(B1617), fish(B1622), chicken(B1614), pi-
geon(B1623), rabbit(B1616), and mouse(B1620) from Beijing Bersee Science and Technology
Co., Ltd. A 2 ml blood sample was extracted from the author’s vein using a disposable blood col-
lection needle and stored in a purple vacuum tube containing EDTA anticoagulant for subsequent
extraction of RBCs. All samples were centrifuged at 3000 rpm/min for 5 min to remove white
blood cells, platelets, plasma, and other impurities. RBCs were then suspended and washed with
phosphate-buffered saline three times. Suspensions of RBCs diluted 50 times were generated,
then 200 µL of diluted RBC suspension was put into a quartz petri dish which was and placed on
the LTRS micromanipulation platform for single RBC detection. In the external environment
RBCs are affected by osmotic pressure and temperature, resulting in hemolysis, RBC rupture,
and hemoglobin overflow [27]. To prevent RBC hemolysis, all samples were stored in a sterile
environment at 4°C–8°C and performed within 24 hours of sample preparation. This research
was approved by the Ethics Committee of Beijing Anzhen Hospital, Capital Medical University.

2.2. LTR

Figure 2 shows the structure of the self-made LTRS system and the images of human RBCs before
and after capture. The whole set of experimental equipment is consistent with that described in
the literature [22]. Briefly, the system consists of a laser, optical coupler, microscope objective,
illumination source, charge-coupled device (CCD), spectrometer, photodetector, and computer.
The 785-nm near-infrared laser is pumped by a laser diode with adjustable power. First a laser
beam of approximately 2 µm is obtained through a beam expansion collimator set, and a narrow
bandpass filter is used to purify the output laser wavelength. The laser passes through the
oil immersion objective (100; N.A.1.40) and is focused to form an optical potential well of
approximately 1 µm for capturing individual RBCs placed on a quartz substrate (approximately 90
µm thick), and the capture laser also stimulates the Raman signal. The back Raman scattering of
RBCs is collected by the same objective. The laser is focused on a 600-g/mm grating spectrometer
after Rayleigh scattering noise is removed by a notch filter. The recorded spectrum window is
300–2000cm−1 and the spectrum resolution is less than 5 cm−1. The Raman signal is split by
the grating, and is received by a thermoelectrically-cooled charge-coupled device (1340 × 400
pixels; PIXIS: 400BD). The temperature is reduced to −70°C via thermoelectric cooling, which
can effectively reduce the influence of dark current noise on the signal. Spectrum information
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is presented on a computer screen for collection and analysis using a software package called
WinSpec (Princeton, NJ, USA). The LTRS imaging path is made up of an Olympus microscope
and a CCD camera that can facilitate the viewing of captured cells in real time on a computer
screen.

Fig. 2. Schematic diagram of the LTRS system. A 785-nm near-infrared laser serves as
both the captured light of the optical tweezers and the excitation light for Raman scattering.
Images of captured RBCs and their Raman spectra are displayed on a computer screen. BF,
band filter; L, lens; M, mirror; DM, dichroic mirror; O, objective; I, illumination; NF, notch
filter; G, grating; S, spectrometer; CCD, charge-coupled device

The selection of light sources was particularly important when building the system. A 785-nm
near-infrared laser was selected as the captured light source and Raman excitation light because it
can balance the scattering efficiency, photothermal damage, noise, detection efficiency, and other
influential factors [28]. In this experiment the average power of the laser was approximately 10
mw, and the exposure time was 30 seconds. Polystyrene spheres (5 µm in diameter) were used
for system calibration.

2.3. Spectra data preprocessing

Raman spectra of RBCs were obtained at least 450 per species using LTRS, and all these recorded
were from different cells. To reduce the influence of intra-individual variation and highlight
the common characteristics of specific species, spectra in which cosmic rays were present were
removed in advance, and groups of three were averaged to obtain a total of 1500 Raman spectra
from 10 species.

When the laser is projected onto the fluorescent material in a sample, the fluorescent background
is generated. These background noises affect the acquisition of valuable information in the
spectrum, and also cause deviations in the establishment of classification models and prediction
results. Therefore, data preprocessing is used to eliminate spectrum data interference by noise
before the establishment of the model [29]. The Raman spectra in the range of 400–1700cm−1

were intercepted and the quartz substrate background was subtracted. The small error caused by
the measuring instrument (i.e., wave number offset caused by different measurement periods) was
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corrected. Background fluorescence was removed by baseline calibration using the asymmetric
least square method. A Sacitzky-Golay filter with the window size set to 5 was then used for
smooth filtering, to suppress high-frequency noise and improve the signal-to-noise ratio of the
spectrum. Due to the influence of experimental conditions and laser output fluctuation, it is
difficult to compare Raman intensity with different dimensions. To obtain a unified relative
Raman intensity and make different spectra comparable, each spectrum was linearly normalized
to the range of 0–1. To improve the generalization ability of classification model and avoid the
over-fitting phenomenon, two thirds of the preprocessed spectrum data were randomly assigned
to a training set, and the remaining third was used as a test set. All the above pretreatment
processes and subsequent classification model establishment were performed using the statistical
software “Origin 2021” and “R”. Figure 3(a) and 3(b) show the average Raman spectra, the
images before and after RBCs were captured, and the spectral preprocessing flow chart.

Fig. 3. (a) Flow chart of spectrum data preprocessing. The process consists of subtracting the
background generated by the quartz substrate, wavenumber correction, baseline calibration,
spectrum smoothing to eliminate noise interference, obtaining relative Raman intensity via
spectrum normalization in the range of 0–1, and partition of datasets. (b) Mean Raman
spectra of RBCs from 10 species, and images before and after capture (captured cells are
circled in red). Solid lines represent mean spectra, and the shadow represents the standard
deviation.

3. Results and discussion

3.1. PCA-LDA modeling for RBC classification

PCA in machine learning algorithms is the most widely used unsupervised data dimension
reduction algorithm [30]. It maximizes variance by projecting high-dimensional data into low-
dimensional data, and then identifies the most important component of the simplified information.
Therefore, dimension reduction analysis of PCA fits well with Raman spectroscopy with high
dimensional characteristics [31]. The red curve in Fig. 5 shows the cumulative variance of the
principal component of the original Raman data after PCA dimensionality reduction. The first
two principal components (PCs) have been able to explain more than 70% of the change in all the
Raman data. Several spectra are presented in the form of points in a two-dimensional plane or
three-dimensional space with PCs as the axis, to achieve the visualization of classification between
different cells. Due to a large amount of data, in order to clearly display the three-dimensional
distribution of the 10 types of samples, 30 samples were randomly selected from the training
set for each species to display the score figure of the first three PCs (PC1, PC2, PC3), as shown
in Fig. 4. The spatial distribution of 10 types of samples can be discerned, which also reflects
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the advantage of the PCA algorithm; which is that it can present the classification in the most
intuitive form.

Fig. 4. Three-dimensional visualization of training set classification.

Fig. 5. The blue curve is the relationship between the mean error of 10-fold cross-validation
and the number of PCs. The red curve shows the cumulative variance as the number of PCs
increases.

Following PCA, Raman spectral data whose original spectral features (wave numbers) are
replaced by PCs, so they can be used to build a classification prediction model by a supervised
approach such as LDA, which takes advantage of PCA and known classification labels. [32].
In the process of model construction based on PCA-LDA, the most optimal parameter (number
of PCs) was selected by using the 10-fold cross-validation method [33]. The whole parameter
optimization process involved dividing the training set into 10 groups of datasets of the same
size, among which 9 groups of data (90% of the training data) were used for model construction,
and the remaining group of data (10% of the training data) was used as a validation set for model
evaluation. The selection of validation sets was then changed, and the whole cross-validation
process was repeated until all 10 groups of data had been used as validation sets for model
evaluation. After each parameter adjustment, the performance of the classification model was
evaluated by verifying the average error rate of the set, and the optimal parameter was selected.
The blue curve in Fig. 5 shows the process of adjusting parameters. The average error of
cross-validation with 20 PCs is the smallest, so the 20 dimensional-reduced features (PC1–PC20)
are determined as the optimal parameters. These parameters are used to train the whole training
set (100% training data) for the LDA classification model.
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The PCA-LDA classification model in the current study had an accurate classification rate
of 97.1% for RBCs of 10 species in the training set, and demonstrated the classification ability
of the model for different species in the form of a confusion matrix. The classification results
are shown in Fig. 6(a). The classification accuracy of human, dog, horse, and pig RBCs is up
to 100%. Accuracy was also > 98% for several other species such as cat, rabbit, mouse, and
fish in the training model. The two species with the largest classification errors in the entire
training model were pigeons (89%) and chickens (87%). In 11 cases pigeons were misclassified
as chickens, and in 12 cases chickens were misclassified as pigeons. Chickens and pigeons may
have been easily confused in the classification model due to the close relationship between them
(i.e., both belong to the avifauna in biological classification).

Fig. 6. (a) Prediction results of the PCA-LDA classification model using the training set. (b)
Prediction results of the PCA-LDA classification model using the test set. (c) The receiver
operating characteristic curve of the test set data in the PCA-LDA classification model
indicated that the areas under the curve of all 10 species were greater than 0.99.

To further verify the predictive power of the PCA-LDA classification model, a classification
test was conducted using the samples (a total of 500 cases) that were not used in the test set. The
spectral data of the test set was loaded into the above model. The results are also presented in the
form of a confusion matrix for all correctly classified species; human, dog, horse, cat, rabbit, fish,
and pig (Fig. 6(b)). The misjudged species were mouse, pigeon, and chicken, of which only 1/50
cases of mouse classification was incorrect (98% accuracy rate). The classifications of pigeons
and chickens were similar those in the training set, with large respective error rates of 80% and
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88%. Ten of the pigeon samples were misclassified as chicken samples, and 5 of the chicken
samples were misclassified as pigeon samples. The accuracy rate of the whole test set was 96.6%.

To more intuitively reflect the performance of the classification model the receiver operating
characteristic (ROC) curve was used [34], which describes the relationship between the sensitivity
of prediction and the false-positive rate at different thresholds. The area under the ROC curve
(AUC; range 0–1) is positively correlated with prediction accuracy. The closer the AUC is to
1, the more ideal the prediction model is. In the present study the AUCs of all species were
greater than 0.99 (Fig. 6(c)), indicating that the combination of LTRS and PCA-LDA had high
specificity and sensitivity, and could achieve high-precision identification of blood species origin
at the single-cell level.

3.2. RF modeling for RBC classification

RF is a machine learning algorithm that synthesizes multiple decision trees via ensemble learning,
and generates predictions based on numerous factors [35]. Its basic unit is a decision tree.
Intuitively speaking, every decision tree is a weak classifier. When a prediction variable is
entered, N decision trees will produce N classification results. RF integrates the prediction results
of all tree voting, and designates the prediction category with the most votes the final output.
Rules generated by the RF are based on the bootstrapping method [36], and the same number
of samples are randomly selected and put back to “train” each decision tree. This method can
effectively avoid the defect of high variance associated with a single decision tree, to achieve
better classification performance. As well as high prediction accuracy, RF has many advantages
[37,38] such as the capacities for efficient use with large datasets, processing samples with high
dimensional features without dimensionality reduction, and assessing the importance of each
feature in classification problems, among others. These advantages are highly compatible with
single-cell Raman spectroscopy, so RF was also used to build a classification model to identify
RBCs of different species in the current study.

The performance of an RF classification model depends on two important parameters; the
number of characteristic variables used by each decision tree (M), and the number of trees in
the “forest” (N). Increases in M and N improve the statistical variance of the model, reduce
prediction error, and increase computational complexity and time, so it is necessary to select an
optimal parameter. An advantage of RF is that parameter optimization can be conducted without
cross-validation. The characteristic data obtained via bootstrapping is a subset of the training
set, and the remaining observation values are referred to as “out-of-bag” (OOB). The overall
classification error can be calculated by using the OOB error. When the amount of data is large
enough, the OOB error is essentially equivalent to the cross-validation error. Figure 7 shows
the relationship between the two parameters and the OBB error. When M= 30 and N= 600, the
OOB error is stable at 4.4% which is also the optimal value to balance calculation efficiency and
prediction accuracy. Because RF is a classification model of random sampling, each decision
tree forming the forest is different, which also leads to different prediction results each time.
Therefore, the OOB error used here refers to the average error after multiple calculations.

A RF classifier was then constructed by determining the best parameters and using training set
data (1000 cases without PCA dimensionality reduction). This RF classifier was used with the
test set to evaluate the performance of the model. Due to the randomness of the RF, the model
was repeatedly run on the training set and test set 10 times, and the average respective accuracies
of the classification were 96.62% and 96.84% (Table 1). The classification results of a randomly
selected sixth test set (accuracy 96.8%) are presented as a confusion matrix. The ROC was
derived from the predicted probability of 10 species in the test set to evaluate the performance of
the classification model. The AUCs of all species were greater than 0.98 (Fig. 8(b)), which also
indicated that the RF classification model had high specificity and sensitivity.
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Fig. 7. Relationships between out-of-bag error and two important parameters in RF. N is
the number of decision trees in the forest, and M is the number of selected features in each
decision tree.

Fig. 8. (a) Prediction results of the RF classification model using the test set. (b) The ROC
curve of the test set data in the RF classification model showed that the AUCs of all 10
species were greater than 0.98.

Table 1. Average accuracies of the RF classification model run 10 times in the training set and the
test set.

Phase 1 2 3 4 5 6 7 8 9 10 Average

Training 96.4 96.8 97.2 96.4 97 96 96.4 97.4 96 96.6 96.62

Test 97 96.2 97 96.8 97.4 96.8 97 97 97 96.2 96.84
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3.3. Advantage of RF modeling

In terms of classification accuracy, the two machine learning algorithms have similar classifi-
cation performance. But how to explain which features (wavenumbers) contribute the most to
classification? Because the PCA-LDA somehow transforms the original Raman features into
PCs, although it achieves effective classification, it loses the interpretability of important features.
In previous studies partial least-squares-discriminant analysis [39], support vector machine [40],
convolutional neural network [22] was unable to explain which features contributed the most to
the classification process at the molecular level, thus failing to discover potential special Raman
peak locations. The most significant advantage of the RF algorithm is that it can directly extract
the features that contribute most to classification. Unlike the features (PCs) in PCA-LDA, RF is
the analysis of no dimensionally reduced features, so the Gini index [41] can be used to describe
the importance of variables in the Raman spectrum, which can be understood as an indicator
to measure the purity of nodes in the decision tree (i.e., if the Gini index is small it means that
almost all variables in a node came from the same category). Figure 9 shows the top 22 most
important features extracted from the classification results of the test set data, which are the
features that reduce the Gini index the most. Bands 1550–1554 cm−1, 1566–1568 cm−1 related
to heme in hemoglobin, and 1003–1006 cm−1 related to phenylalanine contribute the most to
classification prediction [42].

Fig. 9. Variable importance description of the test set. Variable importance is calculated
from the average decrease in the Gini coefficient and expressed as the relative value of the
maximum and minimum.

Raman spectrum peak position analysis can be used to acquire molecular structure information
of various functional groups and chemical bonds, determine potentials and most different Raman
characteristic peaks, and distinguish the Raman spectrum representing different samples based on
these parameters. Hemoglobin is the main component of RBCs, and its highly conjugated heme
subunit has a relatively large Raman cross-section, so the Raman spectrum of hemoglobin mainly
reflects the vibration characteristics of heme [43]. Therefore, the Raman peaks of RBCs and
whole blood samples are related to hemoglobin and its component heme. Previous studies have
also shown that protein abundance is a critical factor in the classification of different cells [44].

To avoid the small error caused by the measurement instrument, samples of horse and dog
measured on the same date were selected for comparison. Figure 10(a) shows the average Raman
spectra of 100 horse erythrocytes (red curve) and 100 dog erythrocytes (black curve) pretreated
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in the training set. The shape of the Raman spectra of RBCs in the two different species is very
similar because the cells have the same biomolecular structure. The mean spectrum at 621,
673, 754, 1003, 1128, 1212, 1545, 1606, and 1620 cm−1 shared common characteristics among
different RBCs. The Raman peaks of these wave numbers were derived from the vibration of
hemoglobin and other molecules related to hemoglobin. The blue curve in Fig. 10(a) represents
the difference between the two mean spectral lines, which is consistent with the importance of
variables described in Fig. 9 by observing several bands with large differences. But we found that
the variables of importance provided in Fig. 9, do not match up with the Raman band positions
seen in the spectra (as given in Grey shaded areas of Fig. 10(a)), instead there is a small shift
in position between the variable of interest and the Raman band position. The reason for this
phenomenon is that the Raman peaks of different species are misplaced due to the spectral
pre-processing step of wavenumber shift correction before the classification model is constructed.
Such as 1550 cm−1 and 1568 cm−1 on the sides of 1545 cm−1, 1225 cm−1 and 1209 cm−1 on the
sides of 1212 cm−1, 756 cm−1 on the right of 754 cm−1, 1612 cm−1 on the right of 1606 cm−1, and
1005 cm−1 on the right of 1003 cm−1. These specific distributions of peaks are shown in Table 2
[45–47] (including the wave number of the offset). In addition, the differences of ten types of
RBCs at 1554cm−1 and 1003cm−1 were quantitatively analyzed in the form of the boxplot, as
shown in Fig. 10(b) and 10(c). The bands with significant differences such as these contribute
significantly to cell classification and were consistent with the analysis in Fig. 9. Therefore,
compared with other algorithms (including PCA-LDA), the RF algorithm is proved can achieve

Fig. 10. (a) Comparison of preprocessed Raman spectra of horse RBCs (red curve) and
dog RBCs (black curve). Grey shaded areas represent Raman characteristic peaks. The blue
curve is the difference spectrum (human minus pig). Green shaded areas represent Raman
characteristic peaks with great difference. (b) Plot of differences in intensity between 10
species at 1554 cm−1. (c) Plot of differences in intensity between 10 species at 1003 cm−1.
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accurate classification while directly obtaining important spectral features that contribute to
classification.

Table 2. Raman shift assignment of RBCs spectra.

Raman shift (cm−1) Assignmenta Component

621 C–C twist Phe

673 δ (pyr deform) sym Trp

754 (756) ν15, ν (pyr breathing) Trp

1003 (1005) phenylalanine Phe

1128 ν (Cβ-methyl) glucose

1172 ν (pyr half-ring) asym Trp

1212 (1209) ν5 + ν18, δ (CmH) protein

1225 ..(CmH) protein

1449 (1453) δ (CH2/CH3) protein

1545 (1550) ν11, ν (CβCβ) heme

1568 ν19, ν (CβCβ) heme

1606(1612) ν (C=C) vinyl heme

1620 ν (C=C) vinyl heme

aAssignments taken from Refs. [45–47] ν, stretch; δ, bend/scissor; sym,
symmetric; p, protein; pyr, porphyrin; Phe, phenylalanine; Trp, tryptophan.

4. Conclusion

Using a self-built LTRS system, we obtained RBC Raman spectra of 10 species without destroying
the erythrocyte. Two machine learning algorithms (PCA-LDA and RF) were used for the statistical
processing of spectral data and the establishment of a classification model. The prediction
accuracy of the two algorithms for 10 types of RBCs was > 96%. Furthermore, the advantages of
RF algorithm compared with PCA-LDA and other classification algorithms are analyzed, which
provides a reference for spectroscopist to select targeted classification algorithms in the future.

We demonstrated that LTRS combined with machine learning algorithms is an effective
analytical technique for interspecific blood classification at the single-cell level. Optical tweezers
can selectively separate a large number of samples in the liquid environment, and the excited
Raman spectrum can be targeted for the analysis of a single micro-nano sample. LTRS has the
advantages of being nondestructive and noninvasive, which makes it ideal for studying numerous
types of biological samples, especially when the sample size is limited and destructive modes of
identification are not possible. This is of great significance in the fields of clinical and rare species
research. Therefore, combining more advanced artificial intelligence algorithms to achieve higher
accuracy of biological cell identification is the main direction of future development. LTRS
combined with machine learning algorithms can be a useful tool for scientists exploring the
biological world at the molecular level.
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